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Abstract
This report investigates AI’s potential to auto-
mate AI R&D by interviewing researchers on their
work, automation predictions, and evaluation of
AI capabilities. Participants identified engineer-
ing tasks as more automatable than idea genera-
tion, highlighting challenges in reasoning, novelty,
and reliability. They predicted near-term automa-
tion will focus on coding, ranging from improved
assistance to autonomous agents. Most partic-
ipants predicted that solving existing AI evalu-
ations for engineering tasks would significantly
accelerate AI R&D. They also suggested improve-
ments, such as more challenging open-ended tasks
and fine-grained assessment of reliability. By clar-
ifying researchers’ perspectives on automation,
these results could inform AI forecasting and the
design of AI R&D evaluations.

1. Executive summary
Background: automating AI R&D might accelerate AI
development

The question of when and how AI might automate AI R&D
is a crucial topic for AI forecasting. There is a long his-
tory of researchers considering this question in the abstract,
and describing its importance for how AI will shape the
future (Turing, 1951).

Cutting-edge AI models have demonstrated capabilities that
may be relevant to AI R&D. For example, software engi-
neering is a large part of AI research. Recent advances
have established superhuman performance in coding contest
questions (Li et al., 2022), and coding assistants such as
Copilot are used at a large scale (Friedman, 2021). Other
notable advances include using AI to help develop efficient
matrix multiplication algorithms (Fawzi et al., 2022), to
optimize data center cooling (Evans and Gao, 2016), and
to aid the design of microchips used for training AI mod-
els (Liu et al., 2023a). Already, there are examples of AI
directly contributing to AI R&D through supervision (Bai

et al., 2022) and synthetic data (Zelikman et al., 2022).

These advances underline the transformative potential of
AI across many scientific and engineering problems. How-
ever, they also raise questions about how to manage these
technologies. If AI could meaningfully accelerate AI R&D,
then the pace of change might become rapid. For society
to understand, govern, and respond to these technologies, it
would be beneficial to understand the timelines on which
we expect key advances in automation.

Goals

Several research groups have begun developing evaluations
and benchmarks to assess AI’s capabilities in areas such
as software engineering, training run optimization, and ma-
chine learning (ML) implementation. This has begun in a
piecemeal fashion, identifying tasks that intuitively seem
relevant to AI research and creating evaluations based on
them. This report brings empirical grounding to evalua-
tion efforts, and to broader questions around automating AI
R&D. Concretely, this report has three goals:

1. Characterize AI R&D work tasks, to form a better
understanding of where automation may be easier, and
where its impacts would be largest.

2. Elicit expert beliefs on the potential of AI to auto-
mate parts of their work. Existing surveys have shown
widespread disagreement. We hope that detailed in-
terviews may clarify why researchers disagree, and
provide testable claims for future work.

3. Collect expert input on proposed AI evaluations for
AI R&D tasks. This feedback can inform the design
of evaluations, including what tasks to cover, and how
they should be implemented.

Methods

To achieve these goals, we conducted semi-structured inter-
views with eight AI researchers and engineers. We asked
them about their day-to-day work, their beliefs about au-
tomation of AI R&D, and their thoughts on model evalua-
tions for AI R&D tasks. In addition to being asked about



evaluation design in general, participants were prompted
with examples of AI R&D evaluations currently under de-
velopment, to provide feedback on their scope and imple-
mentation. Reflecting recent trends, these evaluations were
focused on AI agents: systems that use LLMs as a source
of reasoning and incorporate further features such as work-
ing memory or tool use. We then analyzed participants’
responses for recurring themes, reporting recurring areas of
agreement and disagreement.

Findings

Figure 1 provides a visual summary of this work’s key find-
ings on the AI R&D workflow, including work tasks, ex-
amples, and predictions for automatability. Participants’
descriptions of their work tasks fell into six high-level ar-
eas: creating hypotheses, designing experiments, running
experiments, analyzing results, communication, and study-
ing other work. Participants highlighted several distinctions
within these high-level areas, for example between high-
level planning of research directions and detailed planning
of experiments; or between engineering of prototypes and
performance optimization for an established system.

Predictions for automation of AI R&D differed substan-
tially in pace and extent, but all participants focused their
responses on software engineering tasks such as implemen-
tation and debugging. Other tasks, such as data generation
or curation, were highlighted as promising by two partici-
pants, but received less dedicated discussion in predictions.

Two participants were extremely optimistic, predicting sig-
nificant automation of R&D engineering over the next five
years. These participants predicted that, in five years, AI
agents would autonomously implement code and experi-
ments from natural language descriptions provided by re-
searchers. Their subsequent descriptions of time usage sug-
gested this could automate half or more of their current work.
At the more pessimistic end, two participants predicted that
AI coding assistants and similar tools would continue to im-
prove, but with a modest effect on AI R&D. One participant
described a 20-50% productivity improvement in their work
as an extremely optimistic upper bound. The remaining four
participants fell broadly between these extremes, predicting
that AI assistants would improve, and be helpful, but with
little potential to fully automate their tasks.

Participants identified several challenges that AI must over-
come to automate AI R&D work: reliability, open-ended
planning, long-context reasoning, deep reasoning, and nov-
elty. Due to these challenges, participants unanimously said
that automation over the next five years would be focused
on implementation tasks, such as coding and debugging, as
opposed to hypothesis creation or analyzing results. Several
other factors might prevent automation in practice, such as
researchers needing to be closely familiar with implemen-

tation details, or high compute requirements for running
agents, particularly if they run their own ML experiments.

Figure 2 provides a graphical summary of participants’ sug-
gestions for AI R&D agent evaluations, including feedback
on existing evaluations covering experiment implementation
and debugging. Six participants predicted that AI systems
that could solve these evaluations would be capable of sig-
nificantly automating AI R&D. Some participants’ descrip-
tions of their work tasks suggested agents capable of solving
these evaluations might automate half of current researcher
work hours. A caveat to this finding, emphasized by one
participant, is that the overall effect of automation could
vary greatly across different research tasks, and the overall
impact might be much greater (or less) than an estimate of
researcher work hours might suggest. Two participants were
more skeptical of these evaluations, objecting that R&D
relies on more open-ended, challenging tasks.

When asked about evaluation design in general, five par-
ticipants suggested measuring productivity gains for re-
searchers using AI tools, rather than evaluations of au-
tonomous agents. Researchers’ preferences regarding eval-
uations generally aligned with their predictions about au-
tomation in the next five years. The two most automation-
optimistic participants unequivocally suggested evaluations
for R&D agents. The two participants who were pessimistic
about near-term automation, meanwhile, were most em-
phatic about studying researcher productivity. Other partici-
pants saw benefits to both approaches.

Researchers offered several suggestions for improving the
evaluations, such as variations on the proposed tasks to
increase evaluation robustness. In addition to ideas for
evaluating key practicalities, such as reliability, they also
offered many examples of tasks to prioritize for future R&D
evaluations. A repeated suggestion was to evaluate tasks that
are time-consuming but potentially amenable to automation,
such as reproducing errors. Two participants also offered
further examples of particularly difficult tasks, such as open-
ended performance improvement, which might prove to be
bottlenecks even if easier tasks could be automated.

Conclusion and next steps

Participants’ descriptions of their work, and predictions
about automation, clarify how researchers think about au-
tomatability in AI R&D. This is in contrast to previous
studies of automatability, which tended to use pre-existing
rubrics or ratings, and applied these broadly across a large
number of occupations and high-level tasks (Owen and Be-
siroglu, 2023). Our work unearths several points of agree-
ment, even among researchers with differing views about
short-term automation. Most researchers predict that AI
agents capable of implementing well-defined experiments
and debugging errors would significantly accelerate their



How easily can AI R&D tasks be automated?

Harder to automate

Requires deep reasoning and novel ideas. Relatively little 
dedicated time, but crucial for project productivity.

High-level planning
Conceptual thinking
Ideas for system improvements
Research direction

Unclear automatability

Disagreement on how formulaic this is. Some delegation 
occurs at this level, e.g. executing an advisor's project idea.

Detailed planning
Experiment plans
Adapting ideas
Prioritization

Creating hypotheses 

Easier to automate

Code assistants are likely to keep improving. Often time-
consuming, so acceleration might have a large effect.

Prototype engineering
Writing code
Trying an architectural change
Creating a dataset

Unclear automatability

Unclear progress from existing AI, and mixed opinions on 
reasoning and reliability. Partial automation is helpful.

Performance engineering
Improving efficiency in resources such as compute/memory
Engineering a system for large-scale operation
Improving a dataset

Easier to automate

Even resolving simple or previously-seen errors is valuable. 
Easier to verify, so reliability is less crucial.

Debugging
Reproducing error behavior
Finding causes for errors
Modifying code to fix errors

Designing experiments

Unclear automatability

Many details are not captured in training data, but unclear 
whether this is a major obstacle. Differs a lot by role.

Organizing distributed training
Compute allocation
Scripting for submission, monitoring, etc
Investigating network/hardware problems

Easier to automate

Often repetitive, though may need high reliability. Time-
consuming, so automation may have a large impact.

Monitoring training runs
Detecting cluster problems in training
Resolving errors and issues
Checking logs to monitor training progress

Running experiments

Harder to automate

Requires deep reasoning in novel situations linked to 
hypotheses and previous results. Requires high reliability.

Analyzing results
Interpreting whether results confirm hypotheses
Examining examples to inform hypotheses
Deducing causes for system behaviors

Analyzing results

Figure 1. An overview of this work’s findings on the AI R&D workflow, including work tasks, examples, and automation predictions.



What evaluations for AI R&D tasks do researchers suggest?

Suggested evaluation 

Open-ended performance improvement in a large project 
to improve a key metric, e.g. performance.

High-level planning

Suggested evaluation 

Overcoming obstacles in a research project, responding 
to experimental results with suggested follow-ups.

Detailed planning

Creating hypotheses

Feedback on Implement Sparse Attention evaluation

5/8 participants predicted AI capable of automating 
similar subtasks would significantly accelerate R&D. 
Skeptical feedback suggested the task was too simple, or 
reliability would inhibit usefulness.

Prototype engineering

Suggested evaluation 

Iterative improvements to an existing dataset to train a 
better model, assessed by a predefined metric such as 
downstream task accuracy.

Performance engineering

Feedback on Debugging CUDA evaluation

6/8 participants predicted AI capable of automating similar subtasks would significantly accelerate R&D. Skeptical feedback 
suggested the task was simple, with a clear and reproducible error. Participants emphasized sourcing real-world errors.

Debugging

Designing experiments

No concrete evaluation suggested, although 2/8 
emphasized its importance. This is less documented in 
existing AI benchmarks or research publications, but vital 
at large compute budgets.

Organizing distributed training

Suggested evaluation 

Monitoring whether training runs are in an undesired 
state, and suggesting fixes if so. Participants emphasized 
this subtask was time-consuming, but it is unclear 
whether partial automation would be helpful.

Monitoring training runs

Running Experiments

Suggested evaluation 

Figuring out scaling laws for a downstream application, provided with existing experimental data.

Analyzing results

Analyzing results

Figure 2. An overview of findings on AI evaluations for R&D, including suggestions and feedback on existing evaluations.

work. Disagreements are primarily about when such agents
might become feasible, and whether partial automation will
have a significant impact in the meantime.

These findings open several directions for future research.
A natural next step would be to measure time spent on R&D
tasks. By monitoring activity in detail, and linking this to
the bottlenecks researchers identified, it might be possible to
produce an empirically-grounded model of automatability.
Taking this further, it might even be possible to link such a

model to progress in relevant AI evaluations.

In this work we explored whether existing R&D tasks might
be automated, but it is unclear how this would translate
into faster progress at the project level. This depends on
many hard-to-predict details, such as compute bottlenecks
and potentially diminishing returns to increasing output on
currently-important tasks. Several of these crucial details
were mentioned by participants in this work. A promising
direction could be to study R&D productivity at the project



level; for example, by measuring the productivity effects
of existing AI automation in small-scale research projects.
Existing research in software engineering suggests current
tools have a modest but measurable effect. Quantifying this
effect within AI R&D could set a useful baseline to monitor
whether subsequent advances drive significant acceleration.

Evaluation design is a closely related problem. To what ex-
tent should evaluations focus on full automation, as opposed
to assistive AI tools? Our findings paint a mixed picture.
Most participants predicted the impact of hypothetical au-
tonomous agents would be significant, but were skeptical
that AI would achieve this capability level in the near future.
This suggests that agent evaluations might be most useful
for detecting an extreme outcome: rapid and substantial
automation of AI R&D. Our work offers several suggestions
for evaluation design, based on firsthand suggestions from
AI researchers. We hope these suggestions may be useful
for designing evaluations across a range of tasks and difficul-
ties. Such evaluations, building on existing work by several
researchers, promise to become an informative signal for
AI’s progress in R&D capabilities.

2. Introduction
This report is structured in four sections. In Background and
review, we first review relevant literature, existing results,
and other background material concerning automation of
AI R&D and related tasks. In Methods, we set out details
of our methodology for expert interviews and their analy-
sis. In Results, we analyze the interviews and present key
results. We split this across the broad areas covered in the
interview: Characterizing AI R&D work tasks, Surveying
researchers on automation of AI R&D, Designing evalua-
tions for AI R&D automation and suggestions to improve
them. Finally, in Discussion and conclusions, we discuss
broader implications and next steps.

3. Background and review
We briefly review three strands of pre-existing research: the
economics literature on modelling and predicting automa-
tion; research and engineering literature on automation of
AI R&D tasks; and the AI research literature on evalua-
tions and benchmarking, with a focus on AI R&D software
engineering agents.

3.1. Automation in general: economics and prediction

Much of the existing literature on automation comes from
economics. There is a small but growing subfield of la-
bor economics studying the automatability of work tasks,
and examining the implications of automation for employ-
ment, wages and output (Owen and Besiroglu, 2023). This
provides a useful starting point for our work in two ways:

providing a framework for thinking about automation, and
offering some (contrasting) predictions to build upon.

Existing literature makes two fundamental points about au-
tomation: automation occurs at the level of tasks rather
than occupations, and automation can take different forms
with different implications. The task-focused view empha-
sizes that occupations can undergo transformation in some
tasks even as other tasks remain unchanged. The second
point, that automation takes different forms, is closely re-
lated. Broadly, there are three forms of automation: full
automation of tasks, with technology entirely substituting
for labor; partial automation, with technology improving
workers’ productivity and acting as a complement to labor;
and deskilling, reducing the skill requirement to perform a
task. For our purposes, these points suggest it is important
to consider which tasks are being automated, how they are
being automated, and changes from rearrangement of tasks
as a result.

The second way the automation literature is relevant to this
work is predicting automation. Several authors have devised
different approaches for this challenging task. They broadly
fall into three categories: rating task features, such as broad
skills required and their amenability to automation; mapping
descriptions of tasks to innovations, for example patents;
and surveys to elicit estimates of automation, for example
when all of the tasks in an occupation will be automated.

The track record for task feature rating and patent mapping
predicting automation is mixed. There is some evidence that,
across the entire economy, they can be weakly predictive
of changes in hiring and wages, explaining perhaps 1-10%
of these in previous waves of automation. Putting aside
challenges in interpretation for these findings, such methods
cannot answer more detailed questions such as, “When
would it be possible for AI to automate half of the researcher-
hours involved in developing a frontier LLM today?”

An advantage of surveys is that they specifically cover AI
research, and look further ahead to predict substantial au-
tomation. Moreover, they question AI researchers, who are
by definition most familiar with AI R&D. Surveys show
massive variation in researcher timelines: in a recent survey,
over half of researchers assigned at least 50% chance of all
AI researcher tasks being automatable by 2044.1 However,
individual predictions ranged from years to centuries (Grace
et al., 2024). There was more agreement that AI research
is among the harder occupations to fully automate. These
findings are a useful starting point: we wish to elicit descrip-
tions of why people have shorter or longer timelines, tasks
they predict being automated, and what the effects will be.

1Strictly, this result came from researchers’ median timeline
for high-level machine intelligence, which by definition included
AI research. However, other phrasings led to different results,
suggesting the forecasts are not robust.



3.2. Automating AI R&D: research and tools

The AI literature covers automation of AI R&D, not from
a perspective of prediction and analysis, but instead with
an aim to develop AI models and techniques to perform AI
R&D tasks. By AI R&D, here we broadly refer to the work
tasks of AI researchers and engineers. We do not focus on
related work that could significantly affect AI R&D, but is
not directly part of AI researchers’ work, such as chip design
or creation of new numerical primitives. This narrows the
scope of our work, making the question more tractable.

What are the work tasks of AI researchers? From the aca-
demic literature, one description focuses on “experimen-
tation, the process of designing and running experiments,
analyzing the results, and iterating towards some positive
outcome” (Huang et al., 2024). The particular details of
these tasks vary substantially, reflecting different areas of
AI research. Clearly, there are also tasks that do not fall un-
der this description, such as disseminating findings, studying
previous work, or managing team members. Nevertheless,
this captures the dynamics of R&D on open problems.

One area with plentiful existing research is the automation
of data science tasks, particularly in AutoML (De Bie et al.,
2022). AutoML typically refers to full automation of well-
defined steps in applying ML methods to new problems,
such as model selection and hyperparameter tuning. To
a large extent, the success of AutoML reflects pre-AI (or
at least pre-neural) automation. There are exceptions: ar-
chitecture search has benefited from neural reinforcement
learning (Zoph and Le, 2016), and there is recent proof-
of-concept usage of language models to assist in AutoML
applications (Zhang et al., 2023).

Other applications of neural AutoML remain in their in-
fancy, although AI-assisted data curation has shown promis-
ing results for generating high-quality datasets for both
general-purpose pretraining and capability-specific post-
training (Shao et al., 2024). Relatedly, the use of AI-
generated synthetic data has shown great promise for im-
proving mode capabilities, and is incorporated in current
frontier models (Dubey et al., 2024).

Another important area of existing research is software engi-
neering. Here, we see real world adoption of AI assistance
via tools such as Copilot and ChatGPT. Existing tools seem
to improve software engineering productivity, perhaps more
so for lower-skilled users (Ziegler et al., 2022). These tools
hence fall more into the categories of partial automation and
deskilling.

At the cutting edge of research on AI for software engi-
neering, there have been many notable advances in code
repair (Xia et al., 2023), code generation (Friedman, 2021;
Roziere et al., 2023; Allal et al., 2023; Li et al., 2022), and
fixing bugs (Keller and Nowakowski, 2024). There has

been striking progress from small, closed tasks towards
more open-ended problems. Recent research has increased
the autonomous agency of AI systems by using LLMs as a
source of reasoning (Yao et al., 2022; Shinn et al., 2024),
while incorporating a working memory (Auto-GPT, 2023;
Yang et al., 2024a; Huang et al., 2024), tools such as web
browsers and code execution (OpenAI, 2023a; Anthropic,
2024b), and planning modules to break down tasks into sub-
tasks (Yao et al., 2022; Wei et al., 2022; Yao et al., 2024).
Today’s agents can sometimes solve longer software engi-
neering tasks end-to-end, for example resolving issues from
real world software repositories (Jimenez et al., 2023).

Finally, and most directly relevant to this work, there is
research directly focused on AI R&D tasks. In addition to
assistive tools, such as ML systems to help with literature
search (Wang et al., 2023) or coding (Friedman, 2021), there
is also agent-focused research, where models are developed
to perform the R&D tasks directly (Liu et al., 2023b; Huang
et al., 2024).

3.3. Evaluations and benchmarking

Evaluation of AI capabilities via benchmarks is a familiar
practice in machine learning. Generally, benchmarks refer to
a set of reusable problems with a straightforward procedure
to score results and hence measure performance. Evaluation
is the broader process of estimating model performance,
incorporating benchmarking but also experimentation and
interpretation to assess a model’s capabilities (METR, 2024).
Recent evaluations of AI agents increasingly use a relatively
small number of tasks, involving significant computational
resources and human intervention to execute (METR, 2024;
Anthropic, 2024a).

Several authors have begun developing agent evaluation
tasks that are relevant to AI R&D (Department for Science
and Technology, 2023; METR, 2024), and frontier AI labs
have discussed incorporating AI R&D capabilities in their
policies for model development (Anthropic, 2023; OpenAI,
2023b; Shevlane et al., 2023). To the extent evaluations
already exist, they broadly follow the areas described in
Section 3.2: specific AI R&D tasks and software engineer-
ing. We particularly focus on evaluations for AI agents,
although many of the software engineering benchmarks are
applicable to assistant tools.

MLAgentBench stands out as an early benchmark to mea-
sure AI agents’ capability to autonomously perform R&D
experimentation (Huang et al., 2024). This covers 13 ML
tasks “from diverse domains ranging in difficulty and re-
cency” - for example image classification on CIFAR-10,
Kaggle challenges, and open ML research problems. Some-
what similarly, MLBench tests the ability of agents to
replicate tasks taken from the READMEs of several ML
projects (Liu et al., 2023b). Finally, the METR task suite



Table 1. AI R&D evaluation tasks used in the interviews.

R&D work task Specific evaluation

Implementing well-defined experiments, and reporting the results. Replace attention with sparse attention in a provided codebase
and set of pretrained weights. Finetune and evaluate performance.

Debugging errors. Debug a codebase with a CUDA stream concurrency error.

contains a small number of challenging ML research evalu-
ation tasks, such as building AI for a board game or repli-
cating an ML paper (METR, 2024).

There are many benchmarks for software engineering. At
the time of writing, one of the most challenging bench-
marks in the literature is SWE-Bench, which harvested
GitHub issues to find real-world software engineering prob-
lems (Jimenez et al., 2023). Previous programming bench-
marks typically considered smaller self-contained prob-
lems (Austin et al., 2021; Shinn et al., 2024; Cobbe et al.,
2021; Chen et al., 2021). As might be expected, agents
perform better on SWE-Bench compared to prompting mod-
els in a straightforward “single-turn” setting (Yang et al.,
2024a;b). The METR task suite and OpenAI evaluation
suite also offer several evaluations focused on software en-
gineering, of varying difficulty and scope (METR, 2024;
OpenAI, 2024).

4. Methods
4.1. Interview structure

We conducted one-hour interviews with each subject. These
interviews had a two-part structure, with further detail on
interview structure available in Appendix B:

1. Characterizing AI R&D work and predictions around
automation. Researchers were asked to describe their
day-to-day work, challenges for automation, and their
predictions around AI automation of AI R&D tasks in
the future.

2. Evaluation design for automation of AI R&D. Re-
searchers were presented with example evaluation tasks
and asked to assess their significance and relevance to
automating AI R&D, as well as thoughts on evalua-
tion design. Researchers were also asked more general
questions about how they would design evaluations to
detect AI automating AI R&D.

Example evaluation tasks for the second part are described
in Table 1. These were selected from ongoing work on AI
R&D agent evaluations. These evaluation tasks were priori-
tized for two reasons. First, they are designed to represent

real tasks in ML research, even if in a simplified form. Many
existing evaluations consider problems such as Kaggle com-
petitions, which are further removed from the real work
of AI researchers. Second, these tasks are calibrated for
difficulty. They are too challenging for present-day systems
to solve, but less challenging than tasks such as “prepare a
solution for a recent unsolved ML research challenge”.

4.2. Subject recruitment

We invited ML researchers or research engineers who have
either published at leading conferences such as NeurIPS or
ICML, or who had similar experience. We focused on re-
searchers with experience of either (i) creating architectural
or algorithmic innovations used to improve training or infer-
ence; (ii) devising post-training enhancements to improve
model capabilities; (iii) contributing to the development of
large models.

We recruited participants via direct invitation. Eligible par-
ticipants were identified based on (i) recent ML publications
in relevant academic venues; (ii) pre-existing professional
connections; or (iii) referral from either of the first two cate-
gories. We ultimately interviewed eight participants - this
provides a sense of how researcher opinions differ, and even
which opinions are more prevalent.

Four participants had experience developing LLMs in fron-
tier industry labs, or developing leading open-source mod-
els. For three of these participants, their involvement was
more focused towards model training, for example develop-
ing training algorithms and engineering training runs. The
remaining participant with large model development experi-
ence was focused on evaluation of already-trained models.
The four participants without experience developing large
models were researchers in post-training enhancements, ar-
chitectural/algorithmic innovations, and interpretability.

Three participants were, or recently had been, employed
in large industry AI labs. Two participants were employed
in open-source efforts. Two participants were graduate stu-
dents in academic groups. The remaining participant was
employed at a start-up after completing a PhD. Six partic-
ipants were primarily individual contributors, albeit with
in-depth technical expertise and some managerial respon-



sibilities. Two participants described their jobs as focused
more on management than individual contribution.

4.3. Analysis of interviews

Thematic analysis was used to identify repeated themes
and elements across different respondents. We first identi-
fied themes in responses to individual questions. This led
to an ongoing process of coding responses by participant.
Subsequent passes over the data incorporated responses to
follow-up questions, identifying further common themes.
Ultimately this led to high-level summaries supported by
the data, for example, “Overall, six participants mostly ex-
pected AI to provide assistance rather than full automation
of any significant tasks.”.

Where useful, we include supporting quotations from par-
ticipants. Quotations are edited for clarity. This involves re-
moving fillers such as “um” and “like”, repetition, modifiers
such as “very”, and making other small changes. More sig-
nificant changes, such as omission of clauses or sentences,
are marked with [square brackets].

5. Results
Results are organised under three sections. First, in Sec-
tion 5.1, we document participants’ detailed descriptions
of the everyday work of an AI researcher. Second, in Sec-
tion 5.2, we elicit researcher predictions on automation of
their work tasks, and investigate factors that make R&D
tasks challenging for AI. Finally, in Section 5.3, we collect
researchers’ feedback and thoughts on evaluation design,
with a particular focus on the predefined evaluation tasks
set out in Section 4.

5.1. Characterizing AI R&D work tasks

The first part of the interview focused on researchers’ de-
scriptions of their work tasks: the activities in which they
spend their time, the importance of these activities for their
work, and the way in which they are organised. The aim is
to build a better understanding of where automation would
have significant impacts, rooted in detailed descriptions of
AI R&D work.

R&D IS A FEEDBACK LOOP OF HYPOTHESIS,
EXPERIMENTS AND RESULTS

Figure 5.1 characterizes the AI R&D workflow, building
on the description of (Huang et al., 2024). For every high-
level task in the workflow, most or all participants described
corresponding tasks and examples. Further details are pro-
vided in Appendix A. These high-level tasks are not strictly
sequential, and researchers move back and forth between
them. Moreover, this workflow is not limited to any partic-

ular area of research, such as developing an architectural
change. The same structure holds for dataset research, for
example: a researcher must establish a plan, and criteria to
know whether they have succeeded, then implement this
through engineering to create or modify datasets, then run
experiments and analyze the results.

Participant 1 (P1): “Research goes in cycles
where I will spend a bunch of time trying to figure
out what I think the important problem is, what I
want to work on, and where I think I have some
headroom to make some progress. Then I will go
and start to think about what it actually is that I
want to do to make progress on that area, and that
itself looks like a slightly different thing. And
then there’s sort of raw execution work...”

A key point is that this workflow can be recursive. While im-
plementing an experiment (prototype engineering) to study
an idea for a new architecture (creating hypotheses), a re-
searcher might encounter a bug (debugging) or an unex-
pected result (analyzing results). This would trigger a re-
cursive process of creating hypotheses for the cause, and
devising experiments to investigate further. Sometimes this
can be tightly coupled to the original outer-level loop, for
example because the unexpected result reveals important
information about the higher-level problem.

There were several distinctions within participants’ descrip-
tions of hypothesis generation, design of experiments, and
running experiments. In hypothesis generation, there is a
distinction between high-level planning and detailed plan-
ning of experiments. High-level planning was described in
various ways, but focuses on project ideation, project man-
agement, and intuition about research directions. Detailed
planning involves more concrete detail about what to do
next, translating high-level ideas and hypotheses into exper-
iment ideas. This distinction overlapped with the differing
contributions of senior advisors and their juniors. The fact
that this work can be factored separately in existing R&D
may be relevant for automation - although, as we discuss
later, participants were divided on this and similar questions.

Designing experiments is an even more concrete level of
detail: taking plans, then translating them into a function-
ing implementation that can be used for informative ex-
periments. Within this task, participants described several
different examples, which we categorised as prototype engi-
neering, performance engineering, and debugging.

Prototype engineering involves developing the first func-
tioning version of an experiment (P8: “you do something
from scratch but as simple as possible [...] you observe
something funny with some big model and you don’t quite
understand it. So you try to boil it down to some really sim-
ple example, and go to a Jupyter notebook”). Meanwhile,



AI R&D Workflow

High-level planning
Conceptual thinking
Ideas for system improvements
Research direction

Detailed planning
Experiment plans
Adapting ideas
Prioritization

Prototype engineering
Writing code
Trying an architectural change
Creating a dataset

Performance engineering
Improving efficiency in resources such as compute/memory
Engineering a system for large-scale operation
Improving a dataset

Debugging
Reproducing error behavior
Finding causes for errors
Modifying code to fix errors

Analyzing results
Interpreting whether results confirm hypotheses
Examining examples to inform hypotheses
Deducing causes for system behaviors

Organizing distributed training
Compute allocation
Scripting for submission, monitoring, etc
Investigating network/hardware problems

Monitoring training runs
Detecting cluster problems in training
Resolving errors and issues
Checking logs to monitor training progress

Designing experimentsCreating hypotheses 

Running experimentsAnalyzing results

Figure 3. The AI R&D workflow based on participants’ descriptions, expanding on the pre-existing description of (Huang et al., 2024).
The four high-level workflow tasks decompose into several different tasks, with several concrete examples for each. This figure does not
include additional high-level tasks such as studying other work or communication, which are discussed in Appendix A.

performance engineering involves re-engineering existing
implementations to improve some fairly well-defined and
measurable property, such as speed. Prototype engineering
is more likely to involve substantial new additions to a code-
base, whereas performance engineering tends to involve
modifying an existing mature codebase.

Debugging covers the common tasks of investigating and
fixing undesired behaviour. Debugging is tightly coupled
with the other activities; for example, implementing ideas
in code for the first time often leads to bugs. Nevertheless,

at their extremes, the ideas seem separable. Participants
talk about switching back and forth between implementing
the idea, encountering issues, and then debugging them (P3:
“for something like UL2, which is fairly complex, I probably
need five iterations of debugging”).

Experiment design is followed by running experiments.
Running experiments decomposes into subtly different tasks:
organising the allocation of resources and practicalities, and
monitoring ongoing experiments. These differences were
present in only two participants’ descriptions, but in both



cases they were significant. For example, P4 described
painstakingly maintaining a spreadsheet organising training
jobs, and consulting documentation for the scheduler to sub-
mit them. This heterogeneity seems related to participants’
work and teams - participants who work on small-scale
experiments barely mentioned running experiments as its
own set of tasks, whereas participants directly involved with
large-scale experiments described a significant challenge.

In addition to the predefined R&D tasks, communication
and studying other work were repeated themes. Six partici-
pants discussed the importance of communication in their
work. For the most part, this was about informal collab-
oration within a project. Formal communication, such as
research papers or documentation, was often described more
as an afterthought. Finally, seven participants explicitly men-
tioned studying other work. Typically this was literature
review in the early stages of a project, described as distinct
from hypothesis creation.

HYPOTHESIS CREATION IS VITAL BUT QUICK;
ENGINEERING AND DEBUGGING ARE TIME-CONSUMING

Six participants emphasized that planning and hypothesis
creation are extremely important within a project. It is un-
clear how to specify the time these take, due to overlap with
designing experiments, studying other work, etc. Neverthe-
less, participants’ descriptions suggest these are quick, to
the extent that they have their own dedicated time.

P3: “The decisions you make in the beginning
are really important and since there’s nothing to
start with you really have to think from first prin-
ciples [...] and also finding the topic to work on
because that’s such high leverage. If you choose
a topic that’s uninteresting or not important then
you know the rest of the project. . . it essentially
goes that direction.”

All participants described the importance of engineering
and debugging, and how time-consuming these can be. This
was a core part of participants’ work in most cases, although
more senior participants described spending less time on
this as they shifted towards managing other researchers.

P6: “Most positions in AI nowadays are a com-
bination of research and engineering whether or
not that’s actually your title, and insofar as you’re
not actually doing engineering, it’s almost always
directly managing people who are doing the engi-
neering.”

5.2. Surveying researchers on automation of AI R&D

This section examines researchers’ predictions about au-
tomation of AI R&D work tasks. The aim is to examine pre-

dictions in detail, investigating where and why researchers
disagree, as well as their descriptions of challenges for au-
tomation, and how these relate to work tasks.

PREDICTIONS DIFFER ON AUTOMATION EXTENT, AND
PARTIAL AUTOMATION’S USEFULNESS

There was significant disagreement on the potential of AI
to accelerate AI R&D in the next five years. Table 2 cat-
egorizes participants’ outlooks, and provides examples of
their predictions and reasoning. Broadly, six participants
were optimistic about automating AI R&D. Four were only
somewhat optimistic, describing significant improvements
in AI assistance but little full automation, while two were
extremely optimistic, describing rapid progress from assis-
tance to full automation on significantly many R&D tasks.
Two were more pessimistic, believing AI assistance is (and
will remain) mostly helpful for more routine tasks.

Six participants mostly expected AI to provide assistance
rather than full automation of any significant tasks. More
common was a description of having a better Copilot, or
tools for inspecting code for common mistakes. Participants
who did describe delegating substantial tasks to AI mostly
envisioned that these would be around implementation of
experiments, with researcher labor directed towards plan-
ning and analysis. We discuss their reasons further in the
next section, What makes automation of R&D hard?

WHAT MAKES AUTOMATION OF R&D HARD?

Participants identified several challenges for automation: re-
liability, open-ended planning, long-context reasoning, deep
reasoning, and novelty. Many of these are self-explanatory,
with the arguable exception of deep reasoning. The ex-
amples linking these limitations to R&D work, set out in
Table 3, are illustrative. For example, deep reasoning ex-
amples involved anticipating the implications of design or
implementation decisions across interconnected areas, cre-
ating and reasoning over abstractions, and other necessary
reasoning to enable research success. Several of these chal-
lenges (open-ended planning, deep reasoning, novelty) are
linked to creating hypotheses and analyzing results. All
participants suggested that implementation tasks such as
coding and debugging will be easier for AI in comparison.

All four participants who discussed reliability raised the
issue that for unreliable AI solutions, it would be necessary
to inspect an unreliable AI’s work. If this inspection was
time-consuming, it might undermine any benefit from au-
tomation. P2 offered the example that, in their experience,
current AI code generation causes errors that take time to
debug. P2 further claimed that whereas a human software
engineer can explain parts of their code, AI explanations
are weaker, and less coupled to an understanding of origi-
nal intentions. This shows that even in partial automation,



Table 2. Participants’ outlook for automation of AI R&D over the coming five years. Most participants stressed that their predictions had
low confidence, and they were offering their view on the likeliest scenario. Circles show how many participants held each view.

Outlook Quote

Pessimistic ● ●

AI assistance might be useful for easier soft-
ware engineering, but not much for R&D.

P1: “I don’t see effort being applied as much in terms of how do we get AI
to lift the simplest truth out of all of the dirty mess that the data provides [...]
next token prediction seems a far cry away from that behavior and I think
that’s the behavior that would really unlock both research abilities for AI, for
self-improvement, as well as mathematical abilities, and top-notch software
engineering, and all sorts of other things.”

Somewhat optimistic ● ● ● ●

AI assistance will keep improving, and this
will be helpful for AI R&D, but few tasks will be
fully automated.

P4: “Coding is definitely something that people are working on right now, and
they are making significant progress. This is something that is a very big part
of people’s lives, and it’s taking up all the time from people. So if coding is
accelerated... I think it’s mainly about acceleration of the code.”

Extremely optimistic ● ●

AI assistance progresses to full automation of
significantly many tasks.

P7: “Humans will just be talking in natural language to this huge model, and
the model would both manage the code base and run the experiments, and
basically it might also manage the upcoming training run.”

reliability can be an important challenge.

Novelty is clearly a challenge for current AI models: tasks
that are far outside a model’s training data are hard. Two
participants described this as a bottleneck for automating
R&D in particular. Another subtlety, raised by the same
participants, was that tasks with low legibility also may not
be covered in training data. P5 emphasized that much of
their work would not be stated in a typical research paper;
rather, it was dealing with issues in large compute clusters.
P1 offered a similar example of reverse-engineering the
hardware design of accelerators in order to write better-
performing CUDA code.

Two participants raised a practical concern about fully au-
tomating implementation tasks: the need for researchers to
be familiar with implementation details. Even if an agent
could successfully implement experiments, a researcher may
need to scrutinize the details in order to build up their un-
derstanding of the problem. This step may be necessary to
successfully understand their results and generate further
hypotheses. P8 was particularly skeptical that R&D work
could benefit from automating implementation tasks.

P8: “If you’re doing something that’s never been
done before, then writing it out yourself and see-
ing all the decisions you have to make, and keep-
ing track of those to try to debug it later when
something goes wrong, is part of that process and

part of what’s necessary in order to do good re-
search there.”

Finally, three participants suggested compute bottlenecks
could be another practical obstacle for automation, even
when AI capabilities are ready in principle. Other practical-
ities, such as integration into the code environment, were
mentioned, but participants stated these would likely be
solvable. However, they were less confident that automation
would be compute-efficient. These participants suggested
labs might allocate spare compute towards experiments and
scaling, if automation of R&D tasks was compute-intensive.

5.3. Designing evaluations for AI R&D automation

This section focuses on design of evaluations. The aim is
to collect expert feedback on proposed evaluation tasks for
AI R&D agents. This involves assessing the significance
for automation of these work tasks, and the implementation
details necessary for evaluations to accurately represent
them. This section also discusses researchers’ suggestions
for other evaluation tasks.

IMPLEMENTATION AND DEBUGGING ARE PROMISING
WORK TASKS FOR EVALUATIONS

If evaluation tasks only covered a small part of real AI
R&D work, solving them would have little impact on AI
R&D. To assess evaluation scope, we asked researchers to



Table 3. Limitations of AI that currently stand in the way of automation. Circles show the number of participants who raised a limitation,
and empty circles show participants who predicted this challenge would substantially improve over the next five years.

Challenge Description

Reliability

● ● ❍ ❍

P5: “You ask it to implement this method from this paper and test it out and report back, but then if it
fails by producing code that doesn’t compile, and then returns that it failed this task, are you willing to
assume that architecture doesn’t work, or do you think that it’s just the agent made a mistake?”

Open-ended planning

● ● ❍ ❍

P6, offering an open-ended example: “Our model is only at 75% on this score. That’s not acceptable, we
need to get up to 80%. I’m going to leave it to you [the agent] to figure out how to do that. [Tasks like
this] will be much more common in the world and also harder to automate.”

Long-context reasoning

● ● ❍

P2: “We’re seeing a lot of marketing about, ‘Hey our context window is three million, ten million tokens,
just throw your entire code repository in and now we can implement functions, you can effectively do
updates on an entire repository.’ But my counter-argument to that would be that I think that the ability to
process a larger context length is orthogonal to your ability to actually use that context.”

Deep reasoning

● ●

P1, describing the design of CUDA code: “What is the abstraction that both captures most of what I want
to do with deep learning while also respecting what the hardware is looking for? [...] That’s something
I think we’re pretty far away from, in both context ingestion but also just reasoning. There’s a bunch
of reasoning that you need to do to make that work and in GPT-4 the reasoning seems a little bit too
shallow.”

Novelty

● ●

P6, describing how AI R&D involves novel methods that wouldn’t work at smaller scales: “Most things
an AI has done, some human has done [...] for the frontier tasks, figuring out how to make things run
at extremely large scales or coming up with new training methods for AI, they haven’t ever worked on
small models, but now work.”

describe the significance for their work if AI agents could
perform the work tasks in the leftmost column of Table 4.
These were selected as fairly well-defined proposals from
in-progress R&D evaluations, as discussed in Section 4.1.
Six participants predicted that either or both of these tasks,
if automated, would have a substantial effect on their work,
such as automating half or more of their current work-hours.

Five participants predicted that an agent able to au-
tonomously implement and run well-defined experiments
would significantly accelerate AI R&D. There was wide dis-
agreement over the extent of implied automation, ranging
from little-to-none (“hours or days in a multi-month project”,
broadly the position of three participants) to a great extent
(“60% of my time would be automated if there was a model
that is doing that”, broadly the position of five participants).
Pessimism mostly stemmed from concerns that R&D relies
on more open-ended, challenging implementation tasks.

The five participants who predicted that an experiment-
implementing agent would accelerate R&D expressed posi-
tive views that the specific evaluation was a good represen-
tation of this work task. In fact, the evaluation corresponded
closely to one participant’s work. P4 described spending

most of a month implementing different variants of sparse
attention from the literature and testing them out. P7 dis-
tinguished between different senses in which well-defined
could be meant: it could mean that the relevant examples
were in the agent’s training data, or it could mean that the
agent was provided with relevant documentation in a similar
way to a human researcher. The former sense would be
less useful, as relevant examples are fairly unlikely to be in
training data for novel R&D work.

The debugging of errors evaluation requires an agent to au-
tonomously investigate and fix bugs such as a CUDA stream
concurrency error. Participants were prompted for feedback
on this evaluation, unless they had already discussed de-
bugging of their own volition earlier in the interview. Six
participants suggested this capability would meaningfully
accelerate AI R&D, although participants were reluctant
to quantify the significance in terms of time spent. An ex-
ception was P3, who explained how “if everything after the
time it doesn’t work counts as debugging then it’s probably
like 70% [of time spent coding]”.

Again, a crucial detail was whether a hypothetical agent
needed to cover the most challenging, open-ended bugs to be



Table 4. Work tasks from evaluations, and the significance of automation they might imply if an agent could autonomously perform them.
Circles show the number of participants with optimistic or pessimistic predictions for automation if AI could solve an evaluation.

Work task

Well-defined experiments Debugging errors

Evaluation Replace attention with sparse attention in a pro-
vided model codebase and set of pretrained
weights. Finetune and evaluate performance.

Debug a provided ML codebase with a CUDA
stream concurrency error.

How much AI R&D automation
(optimistic)

P4: “60% of my time would be automated if
there was a model that is doing that”

● ● ● ● ●

P3: “If everything after the time it doesn’t work
counts as debugging then it’s probably like 70%
[of time spent coding].”

● ● ● ● ● ●

Why this might have significant
impact

P4: “Some of my project was specifically on
that, basically implementing different kinds of
attention [...] I spent at least a month doing
different variants of sparse attention.”

P5: “Sometimes [errors] are very difficult to
reproduce or don’t always appear, and those are
definitely very tricky to find [...] but I don’t
think those need to be automatically solved for
it to be helpful.”

How much AI R&D automation
(pessimistic)

P8: “hours or days in a multi-month project”

● ● ●

P8: “If none of your code’s throwing an error
anywhere [...] that is much harder to debug but
I think would be infinitely more useful, in that
case.”

● ●

Why this might not have signifi-
cant impact

P8: “That particular bit of implementation is
not that complicated, not that complex.”

P8: “There’s no explicit CUDA bug, but I’m
getting the wrong results and I can see mathe-
matically they’re wrong results, and that’s very
hard to debug.”

useful. Six participants stressed that bug difficulty can vary
greatly. For this reason, participants were more equivocal
about how well the specific evaluation represented this part
of their work. Three participants emphasized that debugging
explicit errors might be easier than debugging unexpected
or undesired behaviours without an explicit error message.
However, three participants predicted that accelerating even
relatively easy debugging tasks could be significant.

P5: “I think it would still be helpful in the sense of
either easily suggesting next steps for actionable
experiments to try, or helping and generating po-
tential patches for easier ones. You can just follow
the suggestion, after observing it, and then going
through and not being slowed down by simpler
errors. I think that would still be helpful.”

Intriguingly, the two participants with pessimistic predic-
tions for forthcoming automation also predicted that solving
the specified evaluations might not entail substantial ac-
celeration of R&D. This suggests their pessimism about
automation is compatible with having similar predictions
for AI capabilities improvements as other participants. They
simply disagree that such capabilities would be useful to
automate AI R&D.

AGENT EVALUATIONS MIGHT NOT TRACK REAL-WORLD
AUTOMATION

The evaluations examined in these interviews were based
on AI agents autonomously performing R&D tasks. This is
a common feature across much existing work on evaluation
suites for automation of AI R&D, as discussed in Section 3.3.
However, existing AI applications for engineering tasks are



more focused on partial automation using assistive tools:
coding assistance, better search for technical information,
etc. This difference was noted by several participants, three
of whom were particularly concerned that agent evaluations
might not track real-world automation progress.

Concern over full versus partial automation matches par-
ticipants’ earlier predictions, discussed in Section 5.2. Al-
though six participants predicted that solving the agent eval-
uations would entail significant automation of R&D, most
participants previously predicted that R&D automation in
the next five years would be from improving assistive tools
rather than autonomous AI agents.

When asked how they would design evaluations, five par-
ticipants suggested measuring productivity gains for re-
searchers using AI tools, rather than evaluations of au-
tonomous agents. Researchers’ suggestions for evaluations
aligned with their predictions about forthcoming automa-
tion. Extremely automation-optimistic participants sug-
gested evaluations for R&D agents. Participants who were
somewhat optimistic described benefits for both approaches.
However, there was a notable exception. P1, despite skep-
ticism of agents accelerating R&D in the near future, ex-
plained that this might nevertheless be a crux for sudden
and substantial acceleration of AI R&D.

P1: “The question really is, in my view, in what
situations does AI become a complement to labor
versus a substitute for labor? [If] I’m going to
co-pilot a little bit while you’re doing this it can
be at most, in my view, a 20 to 50% improvement,
and that’s pretty optimistic.”

EVALUATIONS SHOULD COVER MANY VARIATIONS AND
EXAMINE RELIABILITY IN DEPTH

Participants offered several ideas to expand or improve on
evaluations, shown in Table 5. A repeated suggestion from
four participants was to cover different variations and dif-
ficulties within high-level tasks such as “implementing a
well-defined experiment”. This could prevent overindexing
on a single evaluation that happens to closely match exam-
ples in training data. This could also be more informative
about the limitations of AI models (P7: “Current models
are quite brittle, so I think they will have high variance and
unpredictable swings in what they can count on”).

P3: “You’ve got to make sure it covers very differ-
ent scenarios where the features are very different,
the codebases are of different lengths and sizes,
but other than that I think it’s a good benchmark
[...] that would be fairly easy to test.”

Similar suggestions for debugging involved evaluating many
different bugs in different codebases. Three participants

suggested sourcing bugs at a variety of difficulties from real
world examples, although one noted this poses a risk of data
leakage.

P7: “Maybe I would look on StackOverflow for
people asking, ‘I’m getting this obscure bug, can
someone help me?’, and then I would read the
solution and if it looks like wow, that’s a crazy
bug... I would try to invent something similar
to that one. But yeah, it’s not perfect because
then maybe the model can remember this specific
example really well. It could just apply the same
kind of reasoning to the task in the eval set.”

Another repeated suggestion, from two participants, was to
focus on reliability, for example by grading best case versus
average case performance. This matches participants’ earlier
discussion of reliability as an obstacle to full automation of
tasks. P5 suggested assessing performance at a fine-grained
level within evaluations, which might give a better sense of
early progress and challenging subtasks.

P5: “Split ‘implement new attention mechanism’
into maybe 15 different steps. Can it write the
code, and then can it run the proper experiments,
or can it select hyper parameters? Instead of all of
those things being different aspects that could be
accomplished but not accomplished sequentially.”

PRIORITIES FOR NEW EVALUATIONS: TIME-CONSUMING
TASKS AND DIFFICULT TASKS

Participants offered several further ideas for evaluation tasks.
A repeated suggestion across three participants was to pri-
oritize tasks that occupy a lot of researchers’ labor but may
be particularly automatable (P1: “What you’d really need
is for there to be some subset of things that are very labor-
intensive [...] like babysitting training runs”). P8 suggested
a related idea: tracking researcher time usage and looking
for time-consuming problems, such as extremely challeng-
ing bugs. P8 emphasized that this might be a necessary
step to ensure evaluations focus on the correct tasks. P5
highlighted that none of the example evaluation tasks specif-
ically examined dataset creation and curation, despite this
occupying significant research effort.

Two participants suggested evaluating tasks that seem partic-
ularly challenging to automate, which might become bottle-
necks to overall automation of R&D. These were often less
clearly defined than the labor-intensive tasks, and are shown
in Table 6. They are generally close to the AI limitations
identified in Section 5.2, for example exploring open-ended
problems, deep reasoning, and research intuition.



Table 5. Potential weaknesses in evaluation tasks and corresponding improvements, where participants provided them.

Evaluation Weakness Suggested improvement

Reasoning too easy Range of problem difficulties

Needs high reliability or verification Robustness across different problems, codebases,
runs

Might not work on novel codebases/ideas Test on novel codebases

Might only work for easily-isolated changes Similar tasks that imply wider changes, e.g. new
parallelism strategy

Insufficiently open-ended Separate evaluation of more open-ended R&D prob-
lems

Sparse attention

Depends on small experiments remaining useful for
future R&D

-

Explicit errors versus incorrect results Test more ambiguous errors

Errors unrepresentative Try to source from real world

Training set contamination Source from outside training
Debugging CUDA

Large scale may be important -

6. Discussion and conclusion
Disagreements on automation are substantial, but this dis-
agreement provides useful information. Researchers have
vastly differing intuitions about when hard problems will be
solved, but mostly not what those hard problems are. Within
the AI R&D workflow, researchers are fairly unified that
implementation tasks are more amenable to automation than
planning, reasoning and interpreting results.

Characterizing AI R&D work tasks in terms of bottlenecks
offers insight into what tasks may be automated sooner, and
where to target evaluations to detect incipient automation.
Several of these bottlenecks, such as deep reasoning or
novelty, correspond to bottlenecks identified in the literature
on automation (Brynjolfsson et al., 2018). Here, they re-
emerge spontaneously from researchers’ description of real
AI R&D work tasks. Other bottlenecks are more closely
linked to the specifics of AI R&D and LLM agents, such as
making effective use of long context.

One promising direction for future work could be investi-
gating these bottlenecks for fine-grained R&D tasks, trying
to identify which seem hardest to automate and why. Pre-
vious work has already shown the potential of a similar
methodology for high-level rating of automatability across
the economy (Brynjolfsson et al., 2018). Developing this
further would require careful definitions for these proper-
ties, but raises the possibility of developing expert-grounded
forecasts for automatability.

Most participants predict AI accelerating R&D via increas-
ingly powerful assistive tools. When asked how they would
design evaluations for automation of AI R&D, these partic-
ipants favor measuring researchers’ productivity increase
when using AI tools (Ziegler et al., 2022). However, when
they considered evaluations for autonomous agents, most
participants predicted solving these would entail significant
automation of their work. Hence, agent-based evaluations
might be useful to specifically detect rapid acceleration of
R&D via automation. Plausibly, it might be best to adopt a



Table 6. Tasks that participants suggested to include in a suite of AI R&D evaluations, or otherwise highlighted within these categories.

Task Description

Labor-intensive tasks

Monitoring and adjusting training runs P1: “Something that’s very labor-intensive like babysitting train-
ing runs.”

Reproducing errors, bugs and behaviours P5: “Sometimes [errors] are very difficult to reproduce or don’t
always appear and those are definitely very tricky to find and
require a lot of effort.”

Dataset creation and curation P5: “Tweaking the data mixture and seeing how things perform
and then evaluating.”

Communication and prioritization for a contributor or manager P7: “I think a lot of things are also about communication between
different people [...] you don’t see as many projects being like,
‘Let’s make a product manager or an automated manager.”’

Harder-to-automate tasks

Investigating open-ended problems P6: “Open-ended performance improvement, where nothing’s
wrong but you’ve got to change a thing of your choosing to make
the performance go up.”

Experiments at a small scale to predict large scale behaviours P7: “Figuring out scaling laws for a particular application.”

Challenging reasoning to figure out next steps P6: “Okay, I got some error back, here is the error message. I’m
like bouncing back and forth there, and doing zero shot evalua-
tions of the form, ‘What do you do now?’ You ask the model and
then read off what happens.”

Overcoming obstacles P7: “And then the second aspect that you might want to test is
how good it is at handling problems or overcoming obstacles. So
it could be that it would have to install a library and encounter
problems, would have to fix bugs.”

portfolio of evaluations, with productivity measurements ex-
amining assistive tools, and capability evaluations focused
on autonomous agents.

Participants offered several suggestions for how to design
evaluations, and AI R&D tasks to prioritize in an evaluation
suite. Generally, these were focused on difficult, open-ended
tasks with longer horizons. Present day models are unable to
solve such tasks end-to-end, which might be addressed with
grading of individual stages within the evaluation. Such an
approach, although difficult to design, could offer a detailed
view of progress. A valuable next step would be developing

evaluation tasks in further detail, including grading of stages.
These evaluations could be submitted for detailed feedback
from researchers, similar to in this work.

A key limitation in this work is its qualitative nature. Re-
searchers assessed how much of their own work might be
automated by agents that could solve certain evaluations,
and sometimes this was even expressed as a percentage of
their time or impact on a project. Inevitably, these estimates
were approximate and speculative. A promising direction
for further work would be to quantitatively measure time
usage through screen recording or similar means. Such a



project could also be valuable for detecting changes in R&D
work, providing further evidence about its automation and
the impacts thereof.

Nevertheless, detailed reports from AI researchers are a
useful starting point for examining where and why they dis-
agree. This work is among the first documenting how AI
researchers think about automation of their work, and what
they think of evaluations for R&D agents. By collecting
researchers’ views on this important topic, we hope to im-
prove AI forecasting and the design of AI R&D evaluations.
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A. Quotes about work subtasks

Table 7. Main R&D workflow tasks, subtasks, examples, and descriptions from participants.

Workflow task Subtask and examples Example description

High-level planning
Conceptual thinking, ideas, re-
search direction

P1: “Research goes in cycles [...] trying to figure out what I think the
important problem is, what I actually want to work on, and where I
think I have some headroom to make progress.”Creating hypotheses

Detailed planning
Experiment plans, adapting
ideas, prioritization

P4: “The process of formulating the hypotheses is something that is
preceding me writing down the actual experiments I’m going to be
running [...] For example, you can say this specific way of doing stuff is
going to improve or change this parameter of my system by this much
[...] you establish an experiment that basically has two distinct possible
outcomes that you are going to distinguish between your hypotheses.”

Prototype engineering
Writing code, updating the
code, trying a new architectural
change, creating a dataset

P3: “If I want to create something new [...] start with a really simple
baseline and then gradually add complexity”

Performance engineering
Compute, efficiency, scaling,
modifying a dataset

P8: “You write a first version and you try to make sure it’s correct.
And then you time it and see what’s slow about it. Try to iterate
on the algorithm like that. Yeah, so that’s very bad... that type of
implementation is a lot more involved than just quick experimentation.”Designing experiments

Debugging
Reproducing error behaviour,
finding causes for errors, modi-
fying code to fix errors

P5: “Okay, we know we’re failing to load this checkpoint from an
external library but there must be some problem and it’s not entirely
clear what the source of that problem is. First, maybe check on a single
node or with no parallelism. Check whether the model successfully
trains in this case compared to some ground truth or some expected
behavior. And then slowly scale up or introduce new variables, maybe
train a model architecture we know works. So this seems to work if we
put it through the pipeline, what about if we add in this thing?”

Organizing distributed training
Compute allocation, scripting,
network issues

P4: “I have a big spreadsheet of all experiments that are planned and
the timetable of when they are supposed to be running and just filling
out that stuff was taking up some part of my time”Running experiments

Monitoring training runs
Detecting cluster problems in
training, resolving errors and is-
sues, checking logs to monitor
training progress

P5: “prepping a bunch of different experiments and then launching
them and making sure that they don’t ever die or fail due to the cluster
health or errors midway through”

Analyzing results Analyzing results
Interpreting whether results con-
firm hypotheses, examining ex-
amples to inform hypotheses,
deducing causes for system be-
haviours

P2: “looking through the data of the performance on evaluation to find
holes [...] it’s performing at 50% on this subtask within this task and a
majority of the errors can be accredited to this behaviour”



Table 8. Additional workflow tasks, subtasks, examples, and descriptions from participants.

Workflow task Subtask and examples Example description

Formal writing
Reports, papers, documentation

P3: “The easiest part for me is writing out the paper
in the end because usually the pieces all come into
place and I just have to spend time on on Overleaf
writing them all down.”Communications

Informal communication
Talking, messaging

P4: “I need to catch up on the communication a lot
more because there are some questions or follow-
ups about ongoing projects that are blockers [...]
some papers are not reproducible, and we need
some sources of data, or we need to brainstorm new
ideas, or stuff like that..”

Studying other work Studying
Reading papers, studying codebases, attending
talks

P3: “if I want to create something new, I would
start with a short literature review, check that it’s
it’s really something new and I’m not reinventing
the wheel”



B. Interview structure
Prerequisites (5 minutes)

• Introduction and preamble.

• Context, structure, and terminology.

Characterizing AI R&D work (10-20 minutes)

• Walk through a typical day of your work, and the tasks you work on in AI R&D.

• Describe key tasks in more detail.

Predictions about automation (10-20 minutes)

• In your work, are some tasks particularly amenable or not to AI automation in the next five years?

• Why? What does this automation look like? What would be the impacts?

Predefined evaluations (20-40 minutes)

• Presentation of work task and evaluation.

• How much of your time could be saved if AI could automate tasks like this? What concrete examples do you imagine
being automated?

• How well does this evaluation represent the task? Would solving this evaluation imply meaningful automation of the
real-world task?

• What are the biggest limitations of this evaluation? How could it be improved?

Evaluations in general (5-20 minutes)

• Are there other tasks that you would prioritize for inclusion in a suite of evaluations?

• What do you think about agent-based evaluations of automating tasks? If you were designing a project to detect AI
accelerating AI R&D, would you do it differently?


